Abstract

Abstract When a thin-walled rubber tube containing an incompressible fluid is compressed between two parallel plates the internal pressure rise depends on the restraints in the contact regions. When there is no friction in the contact zone the pressure rise is lower than when slip is prevented, so that the tube, regarded as a spring, has a compression stiffness which depends on the frictional conditions. The same considerations apply to the inflation of a tube between fixed parallel plates. In this case unstable inflation sets in at a critical pressure when the interfaces are frictionless; the tube develops a pronounced bulge when this pressure is approached. Simple theoretical relations are derived for the internal pressure and compressive force for both these deformations, and for both boundary conditions, assuming that the rubber is neo-Hookean in elastic behavior. Experimental measurements on tubes of different dimensions are shown to be in reasonably good quantitative agreement with these theoretical predictions in all cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.