Abstract

Adipose tissue is a prominent source of plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of plasminogen activation. Increased PAI-1 expression acts as a cardiovascular risk factor, and plasma levels of PAI-1 strongly correlate with body mass index (BMI). Elevated serum levels of interleukin-6 (IL-6), an inflammatory cytokine and a member of the glycoprotein 130 (gp130) ligand family, are found in obese patients and might indicate low-grade systemic inflammation. Another gp130 ligand, oncostatin M (OSM), upregulates PAI-1 in cardiac myocytes, astrocytes, and endothelial cells. We used tissue explants and primary cultures of preadipocytes and adipocytes from human subcutaneous and visceral adipose tissue to investigate whether IL-6 and OSM affect PAI-1 expression in fat. Human subcutaneous and visceral adipose tissue responded to treatment with IL-6 and OSM with a significant increase in PAI-1 production. Human preadipocytes were isolated from subcutaneous and visceral adipose tissue. Adipocyte differentiation was induced by hormone supplementation. All cell types expressed receptors for IL-6 and OSM and produced up to 12-fold increased levels of PAI-1 protein and up to 9-fold increased levels of PAI-1 mRNA on stimulation with IL-6 and OSM. AG-490, a janus kinase/signal transducer and activator of transcription inhibitor, abolished the OSM-dependent PAI-1 induction almost completely. We have for the first time established a link between the gp130 ligands, the proinflammatory mediators IL-6 and OSM, and the expression of PAI-1 in human adipose tissue. Thus, we speculate that IL-6 and OSM, by upregulating PAI-1 in adipose tissue, can contribute to the increased cardiovascular risk of obese patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call