Abstract

Objective To investigate the cytokine expression profiles of blood cells exposed to polyetheretherketone and titanium-6 aluminum-4 vanadium materials in vitro. Materials and methods Coin-shaped samples composed of titanium-6 aluminum-4 vanadium, polyetheretherketone, and blasted polyetheretherketone were manufactured. The surfaces of the coins were characterized using optical interferometry, scanning electron microscopy, and contact angle measurements. Peripheral blood mononuclear cells collected from 10 blood donors were cultured for one, three, and six days in the presence or absence of the coins, and then assayed for cytokine production. Quantification of the peripheral blood mononuclear cells attached to the coins was performed using confocal microscopy after immunofluorescence staining. Results The machined titanium-6 aluminum-4 vanadium coins had a smoother surface topography compared to the machined polyetheretherketone and blasted polyetheretherketone. The highest mean contact angle was noted for the blasted polyetheretherketone, followed by the machined polyetheretherketone and titanium-6 aluminum-4 vanadium. The peripheral blood mononuclear cells produced significantly more proinflammatory cytokines when exposed to the polyetheretherketone surface compared to the titanium-6 aluminum-4 vanadium surface, while the blasted polyetheretherketone induced the highest level of proinflammatory cytokine release from the peripheral blood mononuclear cells. Significantly more cells attached to both polyetheretherketone surfaces, as compared to the titanium-6 aluminum-4 vanadium surface. Conclusion Polyetheretherketone induces a stronger inflammatory response from peripheral blood mononuclear cells than does titanium-6 aluminum-4 vanadium. Surface topography has an impact on cytokine release from peripheral blood mononuclear cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.