Abstract
The absence of translational symmetry in glassy materials poses a significant challenge in establishing effective structure-property relationships in real space. Consequently, the potential energy landscape (PEL) in phase space is widely utilized to comprehend the complex phenomena in glasses. The classical PEL features a two-scale profile comprising mega-basins and sub-basins, corresponding to α-relaxations (e.g. glass transition) and β-relaxations (e.g. local cage-breaking atomic rearrangements), respectively. Recent studies, however, reveal that sub-basins are not smooth and contain finer structures, the origins of which remain elusive. Here we probe the smoothness of sub-basin bottoms in glasses' PEL by introducing small intra-cage cyclic loading and then measuring the net changes in atomic-level stresses. Compared to glasses with pair interaction, glasses with many-body interaction exhibit orders-of-magnitude larger and loading-dependent stress changes even before the first cage-breaking event takes place, which reflect much more feature-rich sub-basins. We further demonstrate this stark contrast stems from the spatial distribution of individual atom's constraining force field. Specifically, at vanishing perturbations, many-body interactions disrupt the positive-definite synchrony in energy variations of the perturbed atom and the whole system, causing inherently less confined atomic responses and infinitely rugged sub-basins. The implications of these findings for the selective addition or removal of fine structures in the PEL and the subsequent tuning of glassy materials' responses to external stimuli are also explored.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have