Abstract
This work tests the no-hair conjecture in f(R) gravity models. No-hair conjecture asserts that all black holes in general relativity coupled to any matter must be Kerr–Newman type. However, the conjecture fails in some cases with non-linear matter sources. Here, we address this by explicitly constructing multiple slow-rotating black hole solutions, up to second order in rotational parameter, for a class of f(R) models ( f(R)=(α0+α1R)p,p>1 ). Such an f(R) includes all higher-powers of R. We analytically show that multiple vacuum solutions satisfy the field equations up to the second order in the rotational parameter. In other words, we show that the multiple vacuum solutions depend on arbitrary constants, which depend on the coupling parameters of the model. Hence, our results indicate that the no-hair theorem for modified gravity theories merits extending to include the coupling constants. The uniqueness of our result stems from the fact that these are obtained directly from metric formalism without conformal transformation. We discuss the kinematical properties of these black hole solutions and compare them with slow-rotating Kerr. Specifically, we show that the circular orbits for the black holes in f(R) are smaller than that of Kerr. This implies that the inner-most stable circular orbit for black holes in f(R) is smaller than Kerr’s; hence, the shadow radius might also be smaller. Finally, we discuss the implications of our results for future observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.