Abstract
We study the stationary distribution of the standard Abelian sandpile model in the box Λn = [-n, n] d ∩ ℤ d for d≥ 2. We show that as n→ ∞, the finite volume stationary distributions weakly converge to a translation invariant measure on allowed sandpile configurations in ℤ d . This allows us to define infinite volume versions of the avalanche-size distribution and related quantities. The proof is based on a mapping of the sandpile model to the uniform spanning tree due to Majumdar and Dhar, and the existence of the wired uniform spanning forest measure on ℤ d . In the case d > 4, we also make use of Wilson’s method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have