Abstract

Hall's theorem for bipartite graphs gives a necessary and sufficient condition for the existence of a matching in a given bipartite graph. Aharoni and Ziv have generalized the notion of matchability to a pair of possibly infinite matroids on the same set and given a condition that is sufficient for the matchability of a given pair (M, W) of finitary matroids, where the matroid M is SCF (a sum of countably many matroids of finite rank). The condition of Aharoni and Ziv is not necessary for matchability. The paper gives a condition that is necessary for the existence of a matching for any pair of matroids (not necessarily finitary) and is sufficient for any pair (M, W) of finitary matroids, where the matroid M is SCF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.