Abstract

Triesch (1997) [25] conjectured that Hall’s classical theorem on matchings in bipartite graphs is a special case of a phenomenon of monotonicity for the number of matchings in such graphs. We prove this conjecture for all graphs with sufficiently many edges by deriving an explicit monotonic formula counting matchings in bipartite graphs. This formula follows from a general duality theory which we develop for counting matchings. Moreover, we make use of generating functions for set functions as introduced by Lass [20], and we show how they are useful for counting matchings in bipartite graphs in many different ways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.