Abstract
Let A be a basic connected finite dimensional algebra over an algebraically closed field. We show that if Γ is an infinite connected component of the Auslander-Reiten quiver ΓA of A in which each ΓA-orbit contains only finitely many vertices, then the number of indecomposable direct summands of the middle term of any mesh, whose starting vertex belongs to the infinite stable part of Γ, is less than or equal to 3. Moreover, if the nonstable vertices belong to τA-orbits of exceptional projectives in Γ, then Γ can be obtained from a stable tube by a finite number of multiple coray-ray insertions of type α*γ and multiple coray-ray insertions of type α*γ.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have