Abstract

Incorporating the side information of text corpus, i.e., authors, time stamps, and emotional tags, into the traditional text mining models has gained significant interests in the area of information retrieval, statistical natural language processing, and machine learning. One branch of these works is the so-called Author Topic Model (ATM), which incorporates the authors's interests as side information into the classical topic model. However, the existing ATM needs to predefine the number of topics, which is difficult and inappropriate in many real-world settings. In this paper, we propose an Infinite Author Topic (IAT) model to resolve this issue. Instead of assigning a discrete probability on fixed number of topics, we use a stochastic process to determine the number of topics from the data itself. To be specific, we extend a gamma-negative binomial process to three levels in orderto capture the author-document-keyword hierarchical structure. Furthermore, each document is assigned a mixed gamma process that accounts for the multi-author's contribution towards this document. An efficient Gibbs sampling inference algorithm witheach conditional distribution being closed-form is developed for the IAT model. Experiments on several real-world datasets show the capabilities of our IAT model to learn the hidden topics, authors' interests on these topics and the number of topics simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.