Abstract

Recommending products that are helpful to customers and tailored to their needs is of pivotal importance for successful online retailing. Online purchase data is typically used to generate such recommendations. This dissertation studies two topic models that use purchase data to make product recommendations. The Author Topic Model (ATM) and Sticky Author Topic Model (Sticky ATM) are applied to the purchase data of an online retailer of animal health products, and their predictive performances are contrasted with those of the benchmark methods Unigram, Bigram, and Collaborative Filtering (CF). This work focuses on the generation of new product recommendations. To increase novelty in recommendations, a new pre-processing approach is presented. The data is prepared prior to model application such that more novel products are included in the recommendations. A total of six data preparation variants are tested. The key finding is that topic models are very competitive with the benchmark methods and outperform them with the data preparation variant, where repetitively purchased items (repeat items) and customers with one item transaction (single-item customers) are eliminated from the data. Marketing practitioners should consider this pre-processing when implementing topic models as recommender models in their online shops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.