Abstract
Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediate devices between semantics and traditional finitary proof systems, they are commonly found in completeness arguments, automated deduction, verification, etc. However, their proof theory is surprisingly underdeveloped. In particular, very little is known about the computational behavior of such proofs through cut elimination. Taking such aspects into account has unlocked rich developments at the intersection of proof theory and programming language theory. One would hope that extending this to infinitary calculi would lead, e.g., to a better understanding of recursion and corecursion in programming languages. Structural proof theory is notably based on two fundamental properties of a proof system: cut elimination and focalization. The first one is only known to hold for restricted (purely additive) infinitary calculi, thanks to the work of Santocanale and Fortier; the second one has never been studied in infinitary systems. In this paper, we consider the infinitary proof system muMALLi for multiplicative and additive linear logic extended with least and greatest fixed points, and prove these two key results. We thus establish muMALLi as a satisfying computational proof system in itself, rather than just an intermediate device in the study of finitary proof systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.