Abstract

The proof of many foundational results in structural proof theory, such as the admissibility of the cut rule and the completeness of the focusing discipline, rely on permutation lemmas. It is often a tedious and error prone task to prove such lemmas as they involve many cases. This paper describes the tool Quati which is an automated tool capable of proving a wide range of inference rule permutations for a great number of proof systems. Given a proof system specification in the form of a theory in linear logic with subexponentials, Quati outputs in Open image in new window the permutation transformations for which it was able to prove correctness and also the possible derivations for which it was not able to do so. As illustrated in this paper, Quati’s output is very similar to proof derivation figures one would normally find in a proof theory book.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.