Abstract

Infiltration is a widely used fabrication method for solid oxide fuel cell (SOFC) composite electrodes. Here we report a study of the structure and electrocatalytic properties of SOFC anodes composed of a layer of lanthanum, strontium chromite (La0.8Sr0.2CrO3, LSCr), both with and without added transition metal dopants, infiltrated into a porous yttria-stabilized zirconia (YSZ) matrix. The structural evolution of the electrode upon reduction and under typical SOFC operating conditions is compared to that reported previously for La0.8Sr0.2Cr0.5Mn0.5O3–YSZ composite anodes. For the transition metal doped materials, a portion of the metal dopants were found to be exsolved from the LSCr lattice upon reduction and to be effective in promoting electro-oxidation of hydrogen. Exsolved cobalt particles were also found to be relatively stable when exposed to hydrocarbon fuels with low activity for the formation of carbon deposits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call