Abstract

Human-computer conversational interactions are increasingly pervasive in real-world applications, such as chatbots and virtual assistants. The user experience can be enhanced through affective design of such conversational dialogs, especially in enabling the computer to understand the emotive state in the user's input, and to generate an appropriate system response within the dialog turn. Such a system response may further influence the user's emotive state in the subsequent dialog turn. In this paper, we focus on the change in the user's emotive states in adjacent dialog turns, to which we refer as user emotive state change. We propose a multi-modal, multi-task deep learning framework to infer the user's emotive states and emotive state changes simultaneously. Multi-task learning convolution fusion auto-encoder is applied to fuse the acoustic and textual features to generate a robust representation of the user's input. Long-short term memory recurrent auto-encoder is employed to extract features of system responses at the sentence-level to better capture factors affecting user emotive states. Multi-task learned structured output layer is adopted to model the dependency of user emotive state change, conditioned upon the user input's emotive states and system response in current dialog turn. Experimental results demonstrate the effectiveness of the proposed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call