Abstract

Many computational methods have been developed to infer causality among genes using cross-sectional gene expression data, such as single-cell RNA sequencing (scRNA-seq) data. However, due to the limitations of scRNA-seq technologies, time-lagged causal relationships may be missed by existing methods. In this work, we propose a method, called causal inference with time-lagged information (CITL), to infer time-lagged causal relationships from scRNA-seq data by assessing the conditional independence between the changing and current expression levels of genes. CITL estimates the changing expression levels of genes by “RNA velocity”. We demonstrate the accuracy and stability of CITL for inferring time-lagged causality on simulation data against other leading approaches. We have applied CITL to real scRNA data and inferred 878 pairs of time-lagged causal relationships. Furthermore, we showed that the number of regulatory relationships identified by CITL was significantly more than that expected by chance. We provide an R package and a command-line tool of CITL for different usage scenarios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call