Abstract

Many bacteria perform a run-and-tumble random walk to explore their surrounding and to perform chemotaxis. In this article we present a novel method to infer the relevant parameters of bacterial motion from experimental trajectories including the tumbling events. We introduce a stochastic model for the orientation angle, where a shot-noise process initiates tumbles, and analytically calculate conditional moments, reminiscent of Kramers-Moyal coefficients. Matching them with the moments calculated from experimental trajectories of the bacteria E. coli and Pseudomonas putida, we are able to infer their respective tumble rates, the rotational diffusion constants, and the distributions of tumble angles in good agreement with results from conventional tumble recognizers. We also define a novel tumble recognizer, which explicitly quantifies the error in recognizing tumbles. In the presence of a chemical gradient we condition the moments on the bacterial direction of motion and thereby explore the chemotaxis strategy. For both bacteria we recover and quantify the classical chemotactic strategy, where the tumble rate is smallest along the chemical gradient. In addition, for E. coli we detect some cells, which bias their mean tumble angle towards smaller values. Our findings are supported by a scaling analysis of appropriate ratios of conditional moments, which are directly calculated from experimental data.

Highlights

  • Taxis refers to the ability of microorganisms to sense and move along the gradient of an external stimulus or field [1]

  • Tumble recognition relies on threshold values that are applied to the swimming speed and the reorientation angle

  • As key tool to shrink the extensive data amount from recorded experimental trajectories, our approach uses a special form of conditional moments (CMs) [29, 30], which we introduce in close analogy to Kramers-Moyal coefficients of stochastic processes [31]

Read more

Summary

Introduction

Taxis refers to the ability of microorganisms to sense and move along the gradient of an external stimulus or field [1]. The most prominent example is chemotaxis, where the gradient is formed by the density of a chemical species [2]. Many microorganisms perform chemotaxis [2,3,4,5] and synthetic swimmers are able to swim along chemical gradients [6,7,8,9]. A very common moving pattern for bacteria is the so-called run-and-tumble random walk. It was first studied by Berg and Brown [2] in the early seventies revealing the distribution of tumble angles and the tumble rate. In the same paper the authors showed that E. coli decreases its tumble rate when moving along a chemical gradient. In this paper we will provide further evidence for such an angle bias

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call