Abstract

Inferring social relationships from user location data has become increasingly important for real-world applications, such as recommendation, advertisement targeting, and transportation scheduling. Most existing mobility relationship measures are based on pairwise meeting frequency, that it, the more frequently two users meet (i.e., co-locate at the same time), the more likely that they are friends. However, such frequency-based methods suffer greatly from data sparsity challenge. Due to data collection limitation and bias in the real world (e.g., check-in data), the observed meeting events between two users might be very few. On the other hand, existing methods focus too much on the interactions between two users, but fail to incorporate the whole social network structure. For example, the relationship propagation is not well utilized in existing methods. In this paper, we propose to construct a user graph based on their spatial-temporal interactions and employ graph embedding technique to learn user representations from such a graph. The similarity measure of such representations can well describe mobility relationship and it is particularly useful to describe the similarity for user pairs with low or even zero meeting frequency. Furthermore, we introduce semantic information on meeting events by using point-of-interest (POI) categorical information. Additionally, when part of the social graph is available as friendship ground truth, we can easily encode such online social network information through a joint graph embedding. Experiments on two real-world datasets demonstrate the effectiveness of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.