Abstract

Enterovirus D68 (EV-D68) has emerged as a significant cause of acute respiratory illness in children globally, notably following its extensive outbreak in North America in 2014. A recent outbreak of EV-D68 was observed in Ontario, Canada, from August to October 2022. Our phylogenetic analysis revealed a notable genetic similarity between the Ontario outbreak and a concurrent outbreak in Maryland, USA. Utilizing Bayesian phylodynamic modeling on whole genome sequences (WGS) from both outbreaks, we determined the median peak time-varying reproduction number (Rt) to be 2.70, 95% HPD (1.76, 4.08) in Ontario and 2.10, 95% HPD (1.41, 3.17) in Maryland. The Rt trends in Ontario closely matched those derived via EpiEstim using reported case numbers. Our study also provides new insights into the median infection duration of EV-D68, estimated at 7.94 days, 95% HPD (4.55, 12.8) in Ontario and 10.8 days, 95% HPD (5.85, 18.6) in Maryland, addressing the gap in the existing literature surrounding EV-D68’s infection period. We observed that the estimated Time since the Most Recent Common Ancestor (TMRCA) and the epidemic’s origin coincided with the easing of COVID-19 related social contact restrictions in both areas. This suggests that the relaxation of non-pharmaceutical interventions, initially implemented to control COVID-19, may have inadvertently facilitated the spread of EV-D68. These findings underscore the effectiveness of phylodynamic methods in public health, demonstrating their broad application from local to global scales and underscoring the critical role of pathogen genomic data in enhancing public health surveillance and outbreak characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call