Abstract

We extend the concept of symbolic transfer entropy to enable the time-resolved investigation of directional relationships between coupled dynamical systems from short and transient noisy time series. For our approach, we consider an observed ensemble of a sufficiently large number of time series as multiple realizations of a process. We derive an index that quantifies the preferred direction of transient interactions and assess its significance using a surrogate-based testing scheme. Analyzing time series from noisy chaotic systems, we demonstrate numerically the applicability and limitations of our approach. Our findings obtained from an analysis of event-related brain activities underline the importance of our method to improve understanding of gross neural interactions underlying cognitive processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.