Abstract
We address the calculation of correlation dimension, the estimation of Lyapunov exponents, and the detection of unstable periodic orbits, from transient chaotic time series. Theoretical arguments and numerical experiments show that the Grassberger-Procaccia algorithm can be used to estimate the dimension of an underlying chaotic saddle from an ensemble of chaotic transients. We also demonstrate that Lyapunov exponents can be estimated by computing the rates of separation of neighboring phase-space states constructed from each transient time series in an ensemble. Numerical experiments utilizing the statistics of recurrence times demonstrate that unstable periodic orbits of low periods can be extracted even when noise is present. In addition, we test the scaling law for the probability of finding periodic orbits. The scaling law implies that unstable periodic orbits of high period are unlikely to be detected from transient chaotic time series.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.