Abstract

The complex neural activity of prefrontal cortex (PFC) is a hallmark of cognitive processes. How these rich dynamics emerge and support neural computations is largely unknown. Here, we infer mechanisms underlying the context-dependent integration of sensory inputs by fitting dynamical models to PFC population responses of behaving monkeys. A class of models implementing linear dynamics driven by external inputs accurately captured PFC responses within contexts and revealed equally performing mechanisms. One model implemented context-dependent recurrent dynamics and relied on transient input amplification; the other relied on subtle contextual modulations of the inputs, providing constraints on the attentional effects in sensory areas required to explain flexible PFC responses and behavior. Both models revealed properties of inputs and recurrent dynamics that were not apparent from qualitative descriptions of PFC responses. By revealing mechanisms that are quantitatively consistent with complex cortical dynamics, our modeling approach provides a principled and general framework to link neural population activity and computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.