Abstract

The temporal organization of biological systems is key for understanding them, but current methods for identifying this organization are often ad hoc and require prior knowledge. We present Phasik, a method that automatically identifies this multiscale organization by combining time series data (protein or gene expression) and interaction data (protein-protein interaction network). Phasik builds a (partially) temporal network and uses clustering to infer temporal phases. We demonstrate the method's effectiveness by recovering well-known phases and sub-phases of the cell cycle of budding yeast and phase arrests of mutants. We also show its general applicability using temporal gene expression data from circadian rhythms in wild-type and mutant mouse models. We systematically test Phasik's robustness and investigate the effect of having only partial temporal information. As time-resolved, multiomics datasets become more common, this method will allow the study of temporal regulation in lesser-known biological contexts, such as development, metabolism, and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.