Abstract

Accurate assessment of relative intravascular volume is critical to guide volume management of patients with acute or chronic kidney disorders, particularly those with complex comorbidities requiring hospitalization or intensive care. Inferior vena cava (IVC) diameter variability with respiration measured by ultrasound provides a dynamic noninvasive point-of-care estimate of relative intravascular volume. We present details of image acquisition, interpretation, and clinical scenarios to which IVC ultrasound can be applied. The variation in IVC diameter over the respiratory or ventilatory cycle is greater in patients who are volume responsive than those who are not volume responsive. When 2 recent prospective studies of spontaneously breathing patients (n=214) are added to a prior meta-analysis of 181 patients, for a total of 7 studies of 395 spontaneously breathing patients, IVC collapsibility index (CI) had a pooled sensitivity of 71% and specificity of 81% for predicting volume responsiveness, which is similar to a pooled sensitivity of 75% and specificity of 82% for 9 studies of 284 mechanically ventilated patients. IVC maximum diameter <2.1 cm, that collapses >50% with or without a sniff is inconsistent with intravascular volume overload and suggests normal right atrial pressure (0-5 mmHg). Inferior vena cava collapsibility (IVC CI)<20% with no sniff suggests increased right atrial pressure and is inconsistent with overt hypovolemia in spontaneously breathing or ventilated patients. These IVC CI cutoffs do not appear to vary greatly depending on whether patients are breathing spontaneously or are mechanically ventilated. Patients with lower IVC CI are more likely to tolerate ultrafiltration with hemodialysis or improve cardiac output with ultrafiltration. Our goal for IVC CI generally ranges from 20% to 50%, respecting potential biases to interpretation and overriding clinical considerations. IVC ultrasound may be limited by factors that affect IVC diameter or collapsibility, clinical interpretation, or optimal visualization, and must be interpreted in the context of the entire clinical situation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call