Abstract

ABSTRACT At the highest redshifts, z > 6 ?> , several tens of luminous quasars have been detected. The search for fainter active galactic nucleus (AGN), in deep X-ray surveys, has proven less successful, with few candidates to date. An extrapolation of the relationship between black hole (BH) and bulge mass would predict that the sample of z > 6 ?> galaxies host relatively massive BHs ( > 10 6 M ⊙ ?> ), if one assumes that total stellar mass is a good proxy for bulge mass. At least a few of these BHs should be luminous enough to be detectable in the 4Ms CDFS. The relation between BH and stellar mass defined by local moderate-luminosity AGNs in low-mass galaxies, however, has a normalization that is lower by approximately an order of magnitude compared to the BH–bulge mass relation. We explore how this scaling changes the interpretation of AGNs in the high-z universe. Despite large uncertainties, driven by those in the stellar mass function, and in the extrapolation of local relations, one can explain the current non-detection of moderate-luminosity AGNs in Lyman Break Galaxies if galaxies below 10 11 M ⊙ ?> are characterized by the low-normalization scaling, and, even more so, if their Eddington ratio is also typical of moderate-luminosity AGNs rather than luminous quasars. AGNs being missed by X-ray searches due to obscuration or instrinsic X-ray weakness also remain a possibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call