Abstract

Composition and spectra of Galactic cosmic rays (CRs) are vital for studies of high-energy processes in a variety of environments and on different scales, for interpretation of γ-ray and microwave observations, for disentangling possible signatures of new phenomena, and for understanding of our local Galactic neighborhood. Since its launch, AMS-02 has delivered outstanding-quality measurements of the spectra of , e ±, and nuclei: 1H-8O, 10Ne, 12Mg, 14Si. These measurements resulted in a number of breakthroughs; however, spectra of heavier nuclei and especially low-abundance nuclei are not expected until later in the mission. Meanwhile, a comparison of published AMS-02 results with earlier data from HEAO-3-C2 indicates that HEAO-3-C2 data may be affected by undocumented systematic errors. Utilizing such data to compensate for the lack of AMS-02 measurements could result in significant errors. In this paper we show that a fraction of HEAO-3-C2 data match available AMS-02 measurements quite well and can be used together with Voyager 1 and ACE-CRIS data to make predictions for the local interstellar spectra (LIS) of nuclei that are not yet released by AMS-02. We are also updating our already-published LIS to provide a complete set from 1H-28Ni in the energy range from 1 MeV nucleon-1 to ~100-500 TeV nucleon-1, thus covering 8-9 orders of magnitude in energy. Our calculations employ the GalProp-HelMod framework, which has proved to be a reliable tool in deriving the LIS of CR , e -, and nuclei 1H-8O.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call