Abstract

Several researchers have focused on random-forest-based inference methods because of their excellent performance. Some of these inference methods also have a useful ability to analyze both time-series and static gene expression data. However, they are only of use in ranking all of the candidate regulations by assigning them confidence values. None have been capable of detecting the regulations that actually affect a gene of interest. In this study, we propose a method to remove unpromising candidate regulations by combining the random-forest-based inference method with a series of feature selection methods. In addition to detecting unpromising regulations, our proposed method uses outputs from the feature selection methods to adjust the confidence values of all of the candidate regulations that have been computed by the random-forest-based inference method. Numerical experiments showed that the combined application with the feature selection methods improved the performance of the random-forest-based inference method on 99 of the 100 trials performed on the artificial problems. However, the improvement tends to be small, since our combined method succeeded in removing only 19% of the candidate regulations at most. The combined application with the feature selection methods moreover makes the computational cost higher. While a bigger improvement at a lower computational cost would be ideal, we see no impediments to our investigation, given that our aim is to extract as much useful information as possible from a limited amount of gene expression data.

Highlights

  • The dynamic behavior of gene expression determines a variety of cell functions

  • We can improve the performance of the proposed method by combining the confidence values computed by the random-forest-based inference method with those computed by the feature selection methods

  • We used the area under the recall-precision curve (AURPC) to quantify the performance of the inference method in this experiment

Read more

Summary

Introduction

The dynamic behavior of gene expression determines a variety of cell functions. Our understanding of biological systems requires the study of complex patterns of gene regulation, as the regulation among genes determines how genes are expressed. One promising approach developed for the analysis of gene regulation is the inference of genetic networks. In a genetic network inference problem, mutual regulations among genes are inferred from gene expression data measured by Inference of Genetic Networks biological technologies, such as DNA microarrays, RNA-seq using generation sequencers, and so on. The inferred network models can serve as ideal tools to help biologists generate hypotheses and facilitate the design of their experiments. Many researchers have taken an interest in the inference of genetic networks

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call