Abstract
Downhole ground motions recorded at the Lotung Large-Scale Seismic Test (LSST) site were used in this paper to infer in-situ dynamic soil properties. The purposes were (1) to provide field evidence of nonlinear soil behavior during earthquake excitation; and (2) to evaluate the accuracy of dynamic properties obtained from geophysical measurements and laboratory tests. For each horizontal component and event analyzed, representative shear-wave velocity and effective shear strain (defined as 65 of peak strain) between consecutive recording stations were estimated. The representative shear-wave velocities were estimated from fundamental resonant frequencies identifiable from the Fourier spectral ratios. The effective shear strains were estimated by linear ground response deconvolution analyses based on the inferred shear-wave velocity profiles. The inferred reduction in shear modulus with increasing effective shear strain was compared with laboratory test data. The degree of agreement between the inferred shear modulus reduction curves and the laboratory test data varied with different testing programs. The inferred low-strain shear-wave velocity profile agreed with geophysical measurements. These observations not only provide field evidence of nonlinear dynamic soil behavior during earthquakes, but also confirm the reasonableness of data provided by geophysical measurements and laboratory tests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have