Abstract
Growth is regulated by gene expression variation at different developmental stages of biological processes such as cell differentiation, disease progression, or drug response. In cancer, a stage-specific regulatory model constructed to infer the dynamic expression changes in genes contributing to tissue growth or proliferation is referred as a dynamic growth regulatory network (dGRN). Over the past decade, gene expression data has been widely used for reconstructing dGRN by computing correlations between the differentially expressed genes (DEGs). A wide variety of pipelines are available to construct the GRNs using DEGs and the choice of a particular method or tool depends on the nature of the study. In this protocol, we have outlined a step-by-step guide for the analysis of DEGs using RNA-Seq data, beginning from data acquisition, pre-processing, mapping to reference genome, and construction of a correlation-based co-expression network to further downstream analysis. We have also outlined the steps for the inclusion of publicly available interaction/regulation information into the dGRN followed by relevant topological inferences. This tutorial has been designed in a way that early researchers can refer to for an easy and comprehensive glimpse of methodologies used in the inference of dGRN using transcriptomics data.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have