Abstract

Conditional Invertible Neural Networks (cINNs) provide a new technique for the inference of free model parameters by enabling the creation of posterior distributions. With these distributions, the mean parameter values, their uncertainties and the correlations between the parameters can be estimated. In this contribution, we summarize the functionality of cINNs, which are based on normalizing flows, and present the application of this new method to a scenario from astroparticle physics. We show that it is possible to constrain properties of the currently unknown sources of ultra-high-energy cosmic rays and compare the posterior distributions obtained with the network to those acquired using the classic Markov Chain Monte Carlo method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.