Abstract
The main goal of this paper is to study inference in an heteroskedastic calibration model. We embrace a multivariate structural model with known diagonal covariance error matrices, which is a common setup when different measurement methods are compared. Maximum likelihood estimates are computed numerically via the EM algorithm. Consistent estimation of the asymptotic variance of the maximum likelihood estimators and a graphical device for model checking are also discussed. Test statistics are proposed for testing hypotheses of interest with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. Results of simulations comprising point estimation, interval estimation, and hypothesis testing are reported. An application to a real data set is given. Up to best of our knowledge, topics such as model checking and hypotheses testing have received only scarce attention in the literature on calibration models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.