Abstract
The main object of this paper is to consider maximum likelihood estimators for models used in detection of analytical bias. We consider the regression model proposed in Ripley and Thompson (Analyst, 112, 1987, p. 377) with an EM-type algorithm for computing maximum likelihood estimators and obtain consistent estimators for the asymptotic variance of the maximum likelihood estimators, which seems not to be available in the literature. Wald type statistics are proposed for testing hypothesis related to the bias of the analytical methods with the asymptotic chi-square distribution which guarantees correct asymptotic significance levels. The main conclusion is that proposed approaches in the literature underestimate the covariance matrix of the maximum likelihood estimators. Results of simulation studies and applications to real data sets are reported to illustrate comparisons with other approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.