Abstract
In many biomedical investigations, parameters of interest, such as the intraclass correlation coefficient, are functions of higher-order moments reflecting finer distributional characteristics. One popular method to make inference for such parameters is through postulating a parametric random effects model. We relax the standard normality assumptions for both the random effects and errors through the use of the Fleishman distribution, a flexible four-parameter distribution which accounts for the third and fourth cumulants. We propose a Fleishman bootstrap method to construct confidence intervals for correlated data and develop a normality test for the random effect and error distributions. Recognizing that the intraclass correlation coefficient may be heavily influenced by a few extreme observations, we propose a modified, quantile-normalized intraclass correlation coefficient. We evaluate our methods in simulation studies and apply these methods to the Childhood Adenotonsillectomy Trial sleep electroencephalogram data in quantifying wave-frequency correlation among different channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.