Abstract
The purpose of this paper is, in the first step, to consider a class of GMM estimators with interesting asymptotic properties and a reasonable number of computations for two dimensionally indexed Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. In the second step, we use the central limit theorem of Huang (1992) for spatial martingale differences to establish the LAN property for general two-dimensional discrete models on a regular grid with Gaussian errors. We then apply this result to the spatial GARCH model and derive the limit distribution of the maximum likelihood estimators of the parameters. Results of numerical simulations are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have