Abstract
ABSTRACTThis article considers inference for the log-normal distribution based on progressive Type I interval censored data by both frequentist and Bayesian methods. First, the maximum likelihood estimates (MLEs) of the unknown model parameters are computed by expectation-maximization (EM) algorithm. The asymptotic standard errors (ASEs) of the MLEs are obtained by applying the missing information principle. Next, the Bayes’ estimates of the model parameters are obtained by Gibbs sampling method under both symmetric and asymmetric loss functions. The Gibbs sampling scheme is facilitated by adopting a similar data augmentation scheme as in EM algorithm. The performance of the MLEs and various Bayesian point estimates is judged via a simulation study. A real dataset is analyzed for the purpose of illustration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.