Abstract
Maximum likelihood (ML) estimators of the model parameters in multiple linear regression are obtained using genetic algorithm (GA) when the distribution of the error terms is long-tailed symmetric. We compare the efficiencies of the ML estimators obtained using GA with the corresponding ML estimators obtained using other iterative techniques via an extensive Monte Carlo simulation study. Robust confidence intervals based on modified ML estimators are used as the search space in GA. Our simulation study shows that GA outperforms traditional algorithms in most cases. Therefore, we suggest using GA to obtain the ML estimates of the multiple linear regression model parameters when the distribution of the error terms is LTS. Finally, real data of the Covid-19 pandemic, a global health crisis in early 2020, is presented for illustrative purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.