Abstract

Predicting the effects of mutations on protein function is an important issue in evolutionary biology and biomedical applications. Computational approaches, ranging from graphical models to deep-learning architectures, can capture the statistical properties of sequence data and predict the outcome of high-throughput mutagenesis experiments probing the fitness landscape around some wild-type protein. However, how the complexity of the models and the characteristics of the data combine to determine the predictive performance remains unclear. Here, based on a theoretical analysis of the prediction error, we propose descriptors of the sequence data, characterizing their quantity and relevance relative to the model. Our theoretical framework identifies a trade-off between these two quantities, and determines the optimal subset of data for the prediction task, showing that simple models can outperform complex ones when inferred from adequately-selected sequences. We also show how repeated subsampling of the sequence data is informative about how much epistasis in the fitness landscape is not captured by the computational model. Our approach is illustrated on several protein families, as well as on in silico solvable protein models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.