Abstract

Transthyretin is a tetrameric protein associated with the commonest form of systemic amyloid disease. Using isotopically labeled proteins and mass spectrometry, we compared subunit exchange in wild-type transthyretin with that of the variant associated with the most aggressive form of the disease, L55P. Wild-type subunit exchange occurs via both monomers and dimers, whereas exchange via dimers is the dominant mechanism for the L55P variant. Because patients with the L55P mutation are heterozygous, expressing both proteins simultaneously, we also analyzed the subunit exchange reaction between wild-type and L55P tetramers. We found that hybrid tetramers containing two or three L55P subunits dominate in the early stages of the reaction. Surprisingly, we also found that, in the presence of L55P transthyretin, the rate of dissociation of wild-type transthyretin is increased. This implies interactions between the two proteins that accelerate the formation of hybrid tetramers, a result with important implications for transthyretin amyloidosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.