Abstract
Senecavirus A (SVA) is an oncolytic RNA virus, and it is the ideal oncolytic virus that can be genetically engineered for editing. However, there has not been much exploration into creating SVA viruses that carry antitumor genes to increase their oncolytic potential. The construction of SVA viruses carrying antitumor genes that enhance oncolytic potential has not been fully explored. In this study, a recombinant SVA-CH-01-2015 virus (p15A-SVA-clone) expressing the human p16INK4A protein, also known as cell cycle-dependent protein kinase inhibitor 2A (CDKN2A), was successfully rescued and characterized. The recombinant virus, called SVA-p16, exhibited similar viral replication kinetics to the parent virus, was genetically stable, and demonstrated enhanced antitumor effects in Ishikawa cells. Additionally, another recombinant SVA virus carrying a reporter gene (iLOV), SVA-iLOV, was constructed and identified using the same construction method as an auxiliary validation. Collectively, this study successfully created a new recombinant virus, SVA-p16, that showed increased antitumor effects and could serve as a model for further exploring the antitumor potential of SVA as an oncolytic virus.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have