Abstract

The 14-3-3 proteins are a family of highly homologous and ubiquitously expressed isoforms that are involved in a wide variety of physiological processes. 14-3-3 have showed actively molecular interaction with PrP and positive 14-3-3 is frequently observed in the cerebrospinal fluid (CSF) samples of the patients with sporadic Creutzfeldt-Jakob disease (CJD). However, the alterations of 14-3-3 in the brain tissues of patients with prion diseases remain little addressed. To address the possible change of brain 14-3-3 during prion infection, we firstly tested the levels of 14-3-3 in the brain tissues of scrapie agent 263 K infected hamsters. Obviously decreased 14-3-3 were observed in the samples of the infected animals, showing time-dependent reduction in the incubation period, while the amounts of S-nitrosylated 14-3-3 were increased in the brains collected at the late stage. A low level of 14-3-3 was also observed in the scrapie infectious cell line SMB-S15, accompanied with up-regulated Bax and down-regulated Bcl-2. Moreover, we found that treatment of PrP106-126 on the cultured cells decreased the cellular 14-3-3 and caused translocations of cellular Bax to the membrane fractions. Knockdown of cellular 14-3-3 sensitized the cultured cells to the challenge of PrP106-126. These data illustrate that significant down-regulation of brain 14-3-3 levels during prion infection may not only be a scenario of the terminal consequence of interacting with abnormal PrP(Sc) but may also participate in the pathogenesis of neuronal damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.