Abstract

To handle the constrained multi-objective evolutionary optimization problems, the authors firstly analyze Deb’s constrained-domination principle (DCDP) and point out that it more likely stick into local optimum on these problems with two or more disconnected feasible regions. Secondly, to handle constraints in multi-objective optimization problems (MOPs), a new constraint handling strategy is proposed, which keeps infeasible elitists to act as bridges connecting disconnected feasible regions besides feasible ones during optimization and adopts stochastic ranking to balance objectives and constraints in each generation. Finally, this strategy is applied to NSGA-II, and then is compared with DCDP on six benchmark constrained MOPs. Our results demonstrate that distribution and stability of the solutions are distinctly improved on the problems with two or more disconnected feasible regions, such as CTP6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.