Abstract

Surrogate-assisted optimization has attracted much attention due to its superiority in solving expensive optimization problems. However, relatively little work has been dedicated to addressing expensive constrained multi-objective discrete optimization problems although there are many such problems in the real world. Hence, a surrogate-assisted evolutionary algorithm is proposed in this paper for this kind of problem. Specifically, random forest models are embedded in the framework of the evolutionary algorithm as surrogates to improve approximate accuracy for discrete optimization problems. To enhance the optimization efficiency, an improved stochastic ranking strategy based on the fitness mechanism and adaptive probability operator is presented, which also takes into account both convergence and diversity to advance the quality of candidate solutions. To validate the proposed algorithm, it is comprehensively compared with several well-known optimization algorithms on several benchmark problems. Numerical experiments are demonstrated that the proposed algorithm is very promising for the expensive constrained multi-objective discrete optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.