Abstract

BackgroundThe time course of infarct evolution, i.e. how fast myocardial infarction (MI) develops during coronary artery occlusion, is well known for several species, whereas no direct evidence exists on the evolution of MI size normalized to myocardium at risk (MaR) in man. Despite the lack of direct evidence, current literature often refers to the "golden hour" as the time during which myocardial salvage can be accomplished by reperfusion therapy. Therefore, the aim of the present study was to investigate how duration of myocardial ischemia affects infarct evolution in man in relation to previous animal data. Consecutive patients with clinical signs of acute myocardial ischemia were screened and considered for enrollment. Particular care was taken to assure uniformity of the patients enrolled with regard to old MI, success of revascularization, collateral flow, release of biochemical markers prior to intervention etc. Sixteen patients were ultimately included in the study. Myocardium at risk was assessed acutely by acute Myocardial Perfusion Single photon emission computed tomography (MPS) and by T2 imaging (T2-STIR) cardiovascular magnetic resonance (CMR) after one week in 10 of the 16 patients. Infarct size was measured by late gadolinium enhancement (LGE) at one week.ResultsThe time to reach 50% MI of the MaR (T50) was significantly shorter in pigs (37 min), rats (41 min) and dogs (181 min) compared to humans (288 min). There was no significant difference in T50 when using MPS compared to T2-STIR (p = 0.53) for assessment of MaR (288 ± 23 min vs 310 ± 22 min, T50 ± standard error). The transmural extent of MI increased progressively as the duration of ischemia increased (R2 = 0.56, p < 0.001).ConclusionThis is the first study to provide direct evidence of the time course of acute myocardial infarct evolution in relation to MaR in man with first-time MI. Infarct evolution in man is significantly slower than in pigs, rats and dogs. Furthermore, infarct evolution assessments in man are similar when using MPS acutely and T2-STIR one week later for determination of MaR, which significantly facilitates future clinical trials of cardioprotective therapies in acute coronary syndrome by the use of CMR.

Highlights

  • The time course of infarct evolution, i.e. how fast myocardial infarction (MI) develops during coronary artery occlusion, is well known for several species, whereas no direct evidence exists on the evolution of MI size normalized to myocardium at risk (MaR) in man

  • Whereas the time course of infarct evolution is well known for several species [3,6,7,8,9,10,11], no direct evidence exists on the evolution of MI size normalized to MaR in man

  • To be considered for inclusion, patients should have no history of old MI, a single occluded artery followed by successful revascularization by primary percutaneous coronary intervention (TIMI grade 3 flow) and absence of gross collateral flow by angiography

Read more

Summary

Introduction

The time course of infarct evolution, i.e. how fast myocardial infarction (MI) develops during coronary artery occlusion, is well known for several species, whereas no direct evidence exists on the evolution of MI size normalized to myocardium at risk (MaR) in man. Our understanding of infarct biology is to a large extent based on experimental studies and little is known from studies in man This is mainly because accurate measurement of MI size in vivo has been difficult to obtain in humans. With the introduction of late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR), it is possible to differentiate between viable and non-viable myocardium, and assessing MI size with high accuracy in vivo [12] It has been shown in both dogs [13] and humans [14] that absolute MI size, or MI size normalized to left ventricular mass, shows no major relation to duration of ischemia. In order to determine how duration of ischemia affects MI size, it is essential to relate MI size to the amount of myocardium subjected to ischemia, i.e. the MaR

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call