Abstract

Gut microbiota has been linked to infant neurodevelopment. Here, an association between infant composite cognition and gut microbiota composition is established as soon as 6months. Higher diversity and evenness characterize microbial communities of infants with composite cognition above (Inf-aboveCC) versus below (Inf-belowCC) median values. Metaproteomic and metabolomic analyses establish an association between microbial histidine ammonia lyase and infant histidine metabolome with cognition. Fecal transplantation from Inf-aboveCC versus Inf-belowCC donors into germ-free mice shows that memory, assessed by a novel object recognition test, is a transmissible trait. Furthermore, Inf-aboveCC mice are enriched in species belonging to Phocaeicola, as well as Bacteroides and Bifidobacterium, previously linked to cognition. Finally, Inf-aboveCC mice show lower fecal histidine and urocanate:histidine and urocanate:glutamate ratios in the perirhinal cortex compared to Inf-belowCC mice. Overall, these findings reveal a causative role of gut microbiota on infant cognition, pointing at the modulation of histidine metabolite levels as a potential underlying mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call