Abstract

In this paper, we introduce two inertial accelerated algorithms for solving the split common fixed-point problem of directed operators in real Hilbert space. The proposed iterative algorithms combine the primal-dual method and the inertial method with the self-adaptive stepsizes such that the implementation of our algorithms does not need any prior information about bounded linear operator norms. Under suitable conditions, the weak and strong convergence results of the algorithms are obtained. Numerical results which involve image restoration problems are reported to show the effectiveness of the proposed algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.