Abstract

Let , and be real Hilbert spaces, let and be two bounded linear operators. Moudafi introduced simultaneous iterative algorithms with weak convergence for the following split common fixed-point problem:Section.Display where and are two firmly quasi-nonexpansive operators with nonempty fixed-point sets and . Note that, by taking and , we recover the split common fixed-point problem originally introduced by Cesnor and Segal. However, to employ Moudafi’s algorithms, one needs to know a prior norm (or at least an estimate of the norm) of the bounded linear operators. To estimate the norm of an operator is very difficult, if it is not an impossible task. In this paper, we will continue to consider the split common fixed-point problem (1) governed by the general class of quasi-nonexpansive operators. We introduce a simultaneous iterative algorithm with a way of selecting the stepsizes such that the implementation of the algorithm does not need any prior information about the operator norms. The weak convergence result of algorithm is obtained and some applied nonlinear analysis examples are stated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.