Abstract

The present work deals with computational modeling of the fluid flow and heat transfer taking place in the process of impact of a cold liquid drop ( T d = 20–25 °C) onto a dry heated substrate characterized by different thermophysical properties. The computational model, based on the volume-of-fluid method for the free-surface capturing, is validated by simulating the configurations accounting for the conjugate heat transfer. The simulations were performed in a range of impact Reynolds numbers (Re = 2000–4500), Weber numbers (We = 27–110) and substrate temperatures ( T s = 100–120 °C). The considered temperature range of the drop-surface, i.e. liquid–solid system does not account for the phase change, that is boiling and evaporation. The model performances are assessed by contrasting the results to the reference database originating from the experimental and complementary numerical investigations by Pasandideh-Fard et al. [Pasandideh-Fard, M., Aziz, S., Chandra, S., Mostaghimi, J., 2001. Cooling effectiveness of a water drop impinging on a hot surface. International Journal of Heat and Fluid Flow, 22, 201–210] and Healy et al. [Healy, W., Hartley, J., Abdel-Khalik, S., 2001. On the validity of the adiabatic spreading assumption in droplet impact cooling. International Journal of Heat and Mass Transfer, 44, 3869–3881]. In addition, the thermal field obtained is analyzed along with the corresponding asymptotic analytical solution proposed by Roisman [Roisman, I.V., 2010. Fast forced liquid film spreading on a substrate: flow, heat transfer and phase transition. Journal of Fluid Mechanics, 656, 189–204]. Contrary to some previous numerical studies, the present computational model accounts for the air flow surrounding the liquid drop. This model feature enables a small air bubble to be resolved in the region of the impact point. The reported results agree reasonably well with experimental and theoretical findings with respect to the drop spreading pattern and associated heat flux and temperature distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.