Abstract

Selective hydrogenation of α,β-unsaturated aldehydes to obtain a high yield of unsaturated alcohols is important in industrial production. This is still a great challenge because it is thermally more favorable for the hydrogenation of CC than for the CO bond. Various strategies have been developed to optimize the catalysts for improving selectivity but are usually accompanied by the sacrifice of catalytic activity. Herein, we adopt the inert metal inducement strategy to synthesize a series of Ir-M alloy nanoparticle catalysts. The optimal catalyst IrCd5 exhibits impressive catalytic performance in the selective hydrogenation of cinnamaldehyde, achieving 96.7% conversion with 94.3% selectivity for cinnamal alcohol, which is far superior to that of the Ir counterpart. Furthermore, the H2 temperature-programmed desorption (H2-TPD) test, styrene-TPD test, surface valence band test and density functional theory calculations demonstrate that the adsorption mode of cinnamaldehyde shifted from parallel to vertical configurations after introducing an inert metal. Compared to Ir, the weaker adsorption of alkene and stronger adsorption of the substrate for IrCd5 lead to the prior adsorption and hydrogenation of the CO bond, thus elevating the selectivity of the cinnamal alcohol. This strategy disperses precious metal nanoparticles effectively, maximizes atomic utilization, and improves the selectivity, which provides a new avenue to design bimetal alloy catalysts for the selective hydrogenation of α,β-unsaturated aldehydes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.