Abstract

We show that Lorentz-Finsler geometry offers a powerful tool in obtaining inequalities. With this aim, we first point out that a series of famous inequalities such as: the (weighted) arithmetic-geometric mean inequality, Acz\'el's, Popoviciu's and Bellman's inequalities, are all particular cases of a reverse Cauchy-Schwarz, respectively, of a reverse triangle inequality holding in Lorentz-Finsler geometry. Then, we use the same method to prove some completely new inequalities, including two refinements of Acz\'el's inequality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.