Abstract

It was shown by E. Gluskin and V.D. Milman in [GAFA Lecture Notes in Math. 1807, 2003] that the classical arithmetic-geometric mean inequality can be reversed (up to a multiplicative constant) with high probability, when applied to coordinates of a point chosen with respect to the surface unit measure on a high-dimensional Euclidean sphere. We present here two asymptotic refinements of this phenomenon in the more general setting of the surface probability measure on a high-dimensional $\ell_p$-sphere, and also show that sampling the point according to either the cone probability measure on $\ell_p$ or the uniform distribution on the ball enclosed by $\ell_p$ yields the same results. First, we prove a central limit theorem, which allows us to identify the precise constants in the reverse inequality. Second, we prove the large deviations counterpart to the central limit theorem, thereby describing the asymptotic behavior beyond the Gaussian scale, and identify the rate function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.